

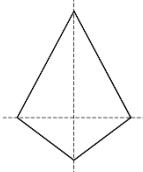
Mathematical Reasoning: Practice Exam

<https://sites.google.com/view/snedomaths/>

AS 91947

5

1.4 Demonstrate mathematical reasoning


Evidence Statement

Q1	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$0.1x + 3 > 11$ $0.1x > 8$ $x > 80$	correct inequality (not \geq)		
(b)	$m = \frac{1-3}{5-0} = -0.4$ $y = -0.4x + 3$	correct equation		
(c)	$\frac{1}{2}(x + (x + 3)) \times 7.5 = 69$ $2x + 3 = 69 \div 3.75$ $2x = 15.4$ so $x = 7.7$ m $d = \sqrt{7.5^2 + 3^2} = 8.078$ $P = 7.5 + x + x + 3 + d = 33.98$ m	correct $x = 7.7$	correct perimeter $P = 33.98$	
(d)	using the y-axis intercept (0,2) [could also use other points to find p and q] $2 = 2^{0+p}$ so $p = 1$ the equation is $y = 2^{x+1}$ $2 = 0^2 + 0 + q$ so $q = 2$ the equation is $y = x^2 + x + 2$ substituting $x = 1$ and $x = 2$ into both $2^{1+1} = 1^2 + 1 + 2 = 4$ giving the point (1,4) $2^{2+1} = 2^2 + 2 + 2 = 8$ giving the point (2,8)	$p = 1$ AND $q = 2$	checking the other points	
(e)	Call one angle x and the other is $90 - x$. The sides beside the angle x are the hypotenuse h and adjacent a . This side a is opposite angle $90 - x$. $\cos x = \frac{a}{h}$ $\sin(90 - x) = \frac{a}{h}$ Whatever the side lengths, the trig ratios will be equal	starts investigation by finding sides of a right triangle with angles 43 and 47	demonstrates the claim is true with an example with different angles	'proof' is generalised for any triangle
(f)	The surface area is two ends and the rectangle, $2A + PL = 640$ $24L = 600$ $L = 25$ mm $V = AL = 20 \times 25 = 500$ mm ³	correct area equation	some algebra finding $L = 25$ mm	$V = 500$ mm ³

Evidence Statement

Q2	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	$3x - 11 = \frac{1}{2}x + 4$ $2.5x = 15$ $x = 6$ <p>the intersection point is (6,7)</p>	point (6,7) note: $x = 6$ is insufficient		
(b)	converting to cm $V = \left(\frac{1}{2} \times 4.5 \times 4.5\right) \times 0.9 = 9.1125$ $\text{mass} = 9.1125 \times 2.525 = 23.009$ $= 23 \text{ grams}$	23 grams require units		
(c)	height above eye-line to top of flagpole $h = 25 \tan 18.5^\circ = 8.3649 \text{ metres}$ total height $H = 8.3649 + 1.64$ $= 10.0049 \text{ metres}$ percentage $\frac{1.64}{10.0049} \times 100\% = 16.39\%$	8.36 metres 16%		
(d)	$x^2 + x^2 + 1.7^2 = 1.9^2$ $2x^2 = 3.61 - 2.89 = 0.72$ $x^2 = 0.36$ Volume $V = x^2 L = 0.6^2 \times 1.7$ $= 0.612 \text{ cubic metres}$ $(x = 0.6 \text{ intermediate step not required})$	correct working to $x^2 = 0.36$	correct volume	
(e)	calculating distances in x - and y -directions: $AD_x = 9.85 \sin 24 = 4.01$ $AD_y = 9.85 \cos 24 = 9.00$ $AB_x = 5 \sin(360 - 307) = 3.99$ $AB_y = 5 \cos 53 = 3.01$ $BC_x = 7.07 \sin 8 = 0.98$ $BC_y = 7.07 \cos 8 = 7.00$ $CD_x = AB_x + AD_x - BC_x = 7.02 \text{ km}$ $CD_y = AB_y + BC_y - AD_y = 1.01 \text{ km}$ distance $CD = \sqrt{7.14^2 + 1.03^2} = 7.09 \text{ km}$ angle $\alpha = \tan^{-1}\left(\frac{1.01}{7.02}\right) = 8.2^\circ$ so the bearing from C to D is 098.2°	three useful distances found	EITHER correct angle $\alpha = 8.2^\circ$ OR correct distance	correct bearing 098° AND distance 7.09 km
(f)	$b^{-8}a^x b^x = \frac{a^x}{b^x}$ $a^x b^{x-8} = a^x b^{-x}$ $b^{x-8} = b^{-x}$ equating powers of b : $-8 + x = -x$ $2x = 8$ $x = 4$	CAO OR expanding correctly	collecting terms, eliminating a^x factors	algebraic working to answer

Evidence Statement

Q3	Expected Coverage	Achievement (u)	Merit (r)	Excellence (t)
(a)	side length $921 \div 4 = 230.25$ volume $V = \frac{1}{3} \times 23.025^2 \times 138.5 = 2,447,528 = 2.45 \times 10^6 \text{ m}^3$	correct, with units, to at least 3 s.f.		
(b)	the n th term is $T_n = 4n + 3$ $T_{16} = 4 \times 16 + 3 = 67$	CAO		
(c)	dark region $A_D = \frac{1}{2}(2 + 7) \times 3 = 13.5 \text{ cm}^2$ light region $A_L = \frac{1}{2}(2 + 5) \times 5 = 17.5 \text{ cm}^2$ ratio $13.5: 17.5 = 27: 35$	both areas	working shown for ratio	
(d)	$2x^2 + x = 10$ $2x^2 + x - 10 = 0$ $(x - 2)(2x + 5) = 0$ $x = 2 \text{ or } x = -2.5$	expanded and rearranged	algebraic working for both solutions	
(e)	draw a horizontal line bottom triangles have angles $37^\circ, 53^\circ, 90^\circ$ top triangles have angles $28^\circ, 62^\circ, 90^\circ$ side lengths of bottom triangle $10 \sin 53^\circ = 7.99$ and $10 \cos 53^\circ = 6.02$ 7.99 is also a side of top triangle hypotenuse $h = 7.99 \div \sin 28^\circ = 17.01$ vertical $v = 7.99 \div \tan 28^\circ = 15.02$ perimeter $P = 2 \times 17.01 + 2 \times 10 = 54.02$ area $A = 2 \times \frac{1}{2} \times 21.04 \times 7.99 = 168.02$	key length 7.99 cm found 	perimeter OR area	perimeter AND area
(f)	$y = kx^2 + 3$ passes through $(3, 6)$ $6 = k \times 3^2 + 3$ so $9k = 3$ and then $k = \frac{1}{3}$ Put $x = 1.5$ into $b = \frac{1}{3} \times 1.5^2 + 3 \Rightarrow b = 3.75$ Put $x = 2.5$ into $c = \frac{1}{3} \times 2.5^2 + 3 \Rightarrow c = 2.25$ $B = (1.5, 3.75)$ and $C(2.5, 2.25)$ halfway would be the average (midpoint) $\frac{A+C}{2} = \left(\frac{0.5+2.5}{2}, \frac{5.25+2.25}{2} \right) = (1.5, 3.75)$ so B is indeed halfway between A and C	finds ONE of $k = \frac{1}{3}$ $b = 3.75$ $c = 2.25$	vertical separation between points found OR attempt to find midpoint	B shown to be midpoint [other methods possible]

Each Question

no attempt	relevant attempt	1u	2u	3u	1r	2r	1t	2t
N0	N1	N2	A3	A4	M5	M6	E7	E8

Total

0	1-3	4-6	7-9	10-12	13-15	16-18	19-21	22-24
not achieved	nearly achieved	low achieved	high achieved	low merit	high merit	low excellence	high excellence	
NOT ACHIEVED			ACHIEVED			MERIT		EXCELLENCE
0-6			7-12			13-18		19-24