




# Mathematical Reasoning: Practice Exam

<https://sites.google.com/view/snedomaths/>

AS 91947

4

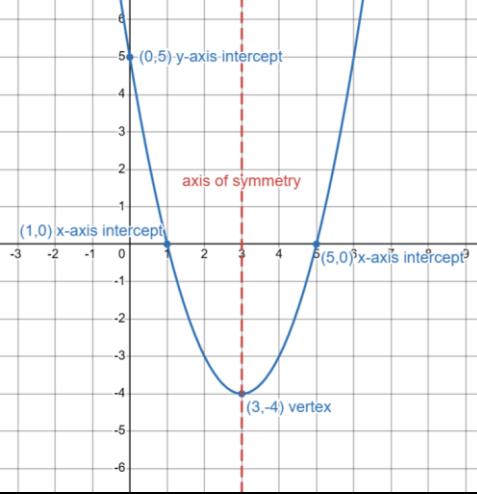
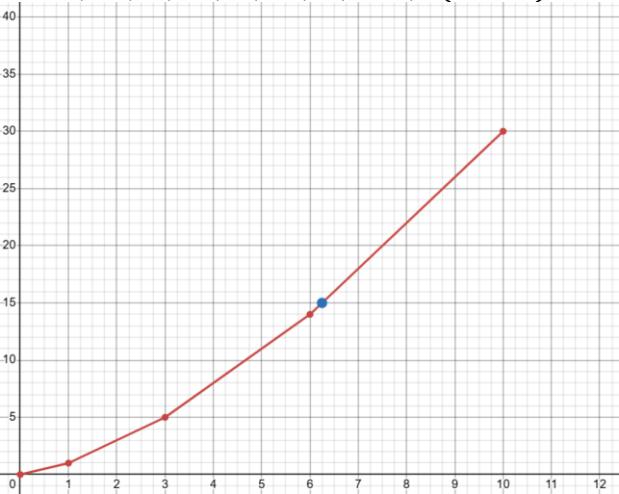
## 1.4 Demonstrate mathematical reasoning

### Evidence Statement

| Q1  | Expected Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Achievement (u)                                                      | Merit (r)                        | Excellence (t)       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------|----------------------|
| (a) | $h = 2d = 2 \times 2r$ so $V = \pi r^2 h$ gives<br>$V = 4\pi r^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | allow CAO                                                            |                                  |                      |
| (b) | $A = (40 - 2x)(60 - 2x) \\ = 2400 - 200x + 4x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | any correct form                                                     |                                  |                      |
| (c) | hypotenuse $\sqrt{3^2 + 4^2} = 5$ (twice),<br>hypotenuse $\sqrt{1^2 + 1^2} = \sqrt{2}$<br>perimeter $P = 5 + 5 + \sqrt{2}$<br>$P = 11.414$                                                                                                                                                                                                                                                                                                                                                                                                             | any hypotenuse with calculation shown                                | $P = 11.414$                     |                      |
| (d) | distances from <b>A</b> to <b>S<sub>1</sub></b> :<br>$x = 2 \sin 32 = 1.060$ & $y = 2 \cos 32 = 1.696$<br>distances from <b>A</b> to <b>S<sub>2</sub></b> :<br>$x = 3 \sin 80 = 2.954$ & $y = 3 \cos 80 = 0.521$<br>so distances from <b>S<sub>1</sub></b> to <b>S<sub>2</sub></b> :<br>$x = 1.894$ & $y = 1.175$<br><br>distance between <b>S<sub>1</sub></b> to <b>S<sub>2</sub></b> : $\sqrt{x^2 + y^2} = 2.229$<br>angle: $31.81^\circ$ so 2.23 km at bearing $122^\circ$                                                                          | any two correct distances from <b>A</b>                              | 2.23 km at bearing $122^\circ$   |                      |
| (e) | original surface area<br>$A = 20^2 + 4 \times 15 \times 20 = 2000 \text{ cm}^2$<br>new block surface area, starting by finding $x$ which is on a triangle with sides $20 - 12 = 8$ and $20 - 8 = 12$ so $x^2 = 12^2 + 8^2 = 14.42$<br>top and bottom area $20^2 - \frac{1}{2} \times 12 \times 8 = 352$<br>perimeter of top:<br>$P = 20 + 20 + 12 + 8 + x = 74.42$<br>area of sides = $15P = 1116.33$<br>total surface area of prism<br>$1116.33 + 2 \times 352 = 1820.33$<br>percentage of surface area<br>$\frac{1820.33}{2000} \times 100\% = 91\%$ | one of<br>surface area of original block = 2000<br>OR<br>$x = 14.42$ | surface area of top<br>$A = 352$ | MERIT and percentage |

|     |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |  |                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|------------------------------------------|
| (f) | <p>The shaded shape has angle <math>x = 90</math><br/> The area is</p> $2\pi = \frac{\pi \times 90 \times 5^2}{360} - \frac{\pi \times 90 \times R^2}{360}$ $2\pi = \frac{25\pi}{4} - \frac{R^2\pi}{4}$ $\frac{R^2\pi}{4} = \frac{25\pi}{4} - 2\pi$ $\frac{R^2}{4} = \frac{25}{4} - 2$ $R^2 = 25 - 8 = 17$ $R = \sqrt{17}$ $R = 4.123 \text{ m}$ | <p>area of the whole sector<br/> <math>\frac{25}{4}\pi</math></p> <p>to highlighted equation</p> |  | answer with algebraic working<br>4.123 m |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|------------------------------------------|

Each Question



| no attempt | relevant attempt | 1u | 2u | 3u | 1r | 2r | 1t | 2t |
|------------|------------------|----|----|----|----|----|----|----|
| N0         | N1               | N2 | A3 | A4 | M5 | M6 | E7 | E8 |

Total

| 0            | 1-3             | 4-6          | 7-9           | 10-12     | 13-15      | 16-18          | 19-21           | 22-24      |
|--------------|-----------------|--------------|---------------|-----------|------------|----------------|-----------------|------------|
| not achieved | nearly achieved | low achieved | high achieved | low merit | high merit | low excellence | high excellence |            |
| NOT ACHIEVED |                 |              | ACHIEVED      |           |            | MERIT          |                 | EXCELLENCE |
| 0-6          |                 |              | 7-12          |           |            | 13-18          |                 | 19-24      |

Evidence Statement

| Q2  | Expected Coverage                                                                                                                                                                                                                                                                                                                                                                | Achievement (u)       | Merit (r)                                  | Excellence (t) |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------|----------------|
| (a) | $2x + 7 \leq 4x + 17$ $-2x \leq 10$ $x \geq -5$                                                                                                                                                                                                                                                                                                                                  | some working required |                                            |                |
| (b) | $m = \frac{\text{rise}}{\text{run}} = \frac{1-5}{4-1} = -\frac{4}{3}$ $y = -\frac{4}{3}x + c$ <p>substitute (1,5)</p> $5 = -\frac{4}{3} \times 1 + c \text{ so } c = \frac{19}{3}$ $y = -\frac{4}{3}x + \frac{19}{3}$ <p>or <math>y - 5 = -\frac{4}{3}(x - 1)</math></p> <p>or <math>y - 1 = -\frac{4}{3}(x - 4)</math> etc</p> $\frac{4}{3}x + y = \frac{19}{3}$ $4x + 3y = 19$ | any form of equation  | final answer (or a multiple with integers) |                |

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                           |                                                                                                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (c) | $50 = 80 - 5t$ $-30 = -5t$ $t = \frac{-30}{-5} \text{ so } t = 6 \text{ minutes}$                                                                                                                                                                                                                                                                                                                                                                    | algebra required in answer                                                                                   |                                                                           |                                                                                                              |
| (d) |                                                                                                                                                                                                                                                                                                                                                                     | <p>correct shape, and two of the labelled features</p> <p>correct shape and ALL of the labelled features</p> |                                                                           |                                                                                                              |
| (e) | $2x^2 + 6x + 5x + 15 + 2x = 0$ $2x^2 + 13x + 15 = 0$ $(2x + 3)(x + 5) = 0$ <p>either <math>x = -1.5</math> or <math>x = -5</math></p> <p>the vertex is half-way between these roots at <math>x = -3.25</math></p> $y = (2 \times -3.25 + 3)(-3.25 + 5)$ $y = -6.125$                                                                                                                                                                                 | <p>expand and simplify</p> <p>factorise and roots</p>                                                        |                                                                           | <p>algebraic working and minimum</p>                                                                         |
| (f) | <p>The insect has positions <math>(0,0), (1,1), (3,5), (6,14), (10,30)</math></p>  <p>so the half-way distance <math>d = 15 \text{ cm}</math> on the line between <math>(6,14)</math> and <math>(10,30)</math>.</p> <p>We are given <math>m = 4</math>, <math>d = 4(t - 14)</math> rearranges to <math>d = 4t - 10</math></p> $15 = 4t - 10$ $4t = 25$ $t = 6.25$ | <p>correct graph</p>                                                                                         | <p>equation found for fourth line <math>y = 4t - 10</math> (any form)</p> | <p>algebraic working to get:<br/> <math>d = 15</math><br/> gives<br/> <math>t = 6.25</math><br/> seconds</p> |

### Evidence Statement

| Q3  | Expected Coverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Achievement (u)                             | Merit (r)                                                  | Excellence (t)                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|-----------------------------------------------------|
| (a) | common ratio $r = 3$<br>$T_n = 2 \times 3^{n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | equation for $T_n$                          |                                                            |                                                     |
| (b) | $x^2 + (x + 7)^2 = (x + 8)^2$<br>$x^2 + x^2 + 14x + 49 = x^2 + 16x + 64$<br>$x^2 - 2x - 15 = 0$<br>$(x - 5)(x + 3) = 0$<br>either $x = -3$ (reject as not a triangle)<br>or $x = 5$ cm (answer)                                                                                                                                                                                                                                                                                                                         | quadratic formed and simplified             | $x = -3$ rejected,<br>$x = 5$ cm                           |                                                     |
| (c) | Let $a$ be the age of Andrea and $b$ be the age of Blake<br>$b = a + 6$<br>$b = 1.15a$<br>then $1.15a = a + 6$<br>$0.15a = 6$<br>$a = 6 \div 0.15 = 40$<br>$n = a + 6 = 46$<br>Andrea is 40 and Blake is 46                                                                                                                                                                                                                                                                                                             | equations formed                            | solution in context                                        |                                                     |
| (d) | $b = 1.1h$<br>$A = \frac{2}{3}bh = \frac{2.2}{3}h^2 = 165$<br>$h^2 = 165 \times \frac{3}{2.2} = 225$<br>$h = 15$ cm<br>$b = 16.5$ cm                                                                                                                                                                                                                                                                                                                                                                                    | equation formed<br>$\frac{2.2}{3}h^2 = 165$ | uses algebra:<br>both dimensions<br>$h = 15$<br>$b = 16.5$ |                                                     |
| (e) | $A = 2$ and $B = 2$<br>$4^x - 2 = 2$ gives $4^x = 4$ so $x = 1$ ,<br>the point is $(1,2)$<br>$4^{x-2} = 2$ gives $(2^2)^{x-2} = 2^1$<br>$2^{2x-4} = 2^1$<br>$2x - 4 = 1$<br>$x = 2.5$<br>the point is $(2.5,2)$                                                                                                                                                                                                                                                                                                         | $A = 2$<br>AND<br>$B = 2$                   | AND<br>point $(1,2)$                                       | AND<br><b>algebraic working</b> for point $(2.5,2)$ |
| (f) | applying similar triangles to the cones:<br>cone 1 with height $H$ has radius $x$ has<br>$V_1 = \frac{1}{3}\pi x^2 H$<br>cone 2 with height $2H$ and radius $2x$ has<br>$V_2 = \frac{1}{3}\pi(2x)^2 \times 2H = \frac{8}{3}\pi x^2 H$<br>whole cone with height $3H$ and radius $3x$ has<br>$V_3 = \frac{1}{3}\pi(3x)^3 \times 3H = \frac{27}{3}\pi x^2 H$<br>Bottom piece has volume<br>$P_3 = \left(\frac{27}{3} - \frac{8}{3}\right)\pi x^2 H$<br>$P_3 = 19 \times \frac{1}{3}\pi x^2 H = 19V_1$<br>$P_1:P_3 = 1:19$ | $V_2$ or $V_3$                              | volume of $P_3$<br>$\frac{19}{3}\pi x^2 H$                 | correct ratio fully simplified                      |